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I n  studying the behaviour of a density-stratified shear flow difficulties are encountered 
at  the ‘critical’ level where wave velocity equals fluid velocity. 

Here a stratified shear layer of finite thickness is considered and a two-dimensional 
nonlinear steady-state problem is studied. It is assumed that blocking creates separate 
pockets of trapped fluid, each mixed to uniform density. These pockets are not in 
static equilibrium with the surrounding stratified fluid. They must be supported either 
by pressures dynamically developed in the curved flow along continuous streamlines 
outside the pockets or by centrifugal forces resulting from circulation within the 
pockets. The latter effect is considered only through evaluation of a crude ‘factor of 
importance’, FK, for the rotational effects and the pockets are assumed to  be stagnant 
in the primary analysis. 

For small but finite disturbance amplitude FE approaches zero, indicating that no 
correction of the primary analysis is required. A limiting Richardson number of unity 
appears. Above this limit the primary analysis gives no solutions and apparently the 
separate pockets of stagnant fluid merge to form a continuous stagnant insulating 
layer. This behaviour of the critical level (as a barrier to communication) resembles 
earlier results from transient linearized investigations although the two analyses hare 
little in common except the existence of a critical level separating two fluid regions. 

For moderate-to-large disturbance amplitudes the geometry of the flow pattern 
suggests Kelvin-Helmholtz billows. Rotational effects increase as the amplitude in- 
creases and may become significant a t  this stage. The primary analysis then becomes 
less accurate and cannot be used to exclude Kelvin-Helmholtz billows a t  Richardson 
numbers somewhat greater than unity. 

1. Introduction 
Preliminury remarks 

Internal waves in the ocean exist because of small variations of density in the vertical 
direction, just as surface waves exist because of the large density difference between 
water and the air above. In  each case vertical displacement of the Auid creates a 
restoring force, small for internal waves and large for surface waves. For internal 
waves the period is large (e.g. 10 minutes) and the horizontal propagation velocity 
small. 

Because of the low horizontal velocities of the internal waVes they can be seriously 
affected by variations of a few feet per second in horizontal fluid velocity. Variation 
of the horizontal fluid velocity with depth is called vertical shear. A particularly 
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interesting and difficult problem arises when wave velocity is equal to fluid velocity 
a t  some height (the critical level) in the shear layer, 

The present study is an attempt t'o determine what relation exists in the steady state 
between disturbances above and below a critical level. 

Previous work 

The steady-state flow pattern we seek might be thought of as the end result of some 
transient process related to  (but not identical with) that  investigated by Booker & 
Bretherton (1967). On the other hand, for moderately large amplitude the geometry 
of the flow pattern resembles a row of Kelvin-Helmholtz billows. Thus two lines of 
comparison are suggested. 

Pursuing the first line, we note a few of the many contributions in this field. Brether- 
ton (1966) and Booker & Bretherton (1967) showed the absorption of infinitesimal 
transient internal waves near the critical level. Their mathematical analysis was based 
on the work of Miles (1961), who showed the relation between solutions above and 
below the singular point (critical height) for the linearized equations. Hines & Reddy 
(1966) indicated an energy absorption in this region but by a different mechanism. 

Pursuing the second line of comparison, we note some examples of work related to 
Kelvin-Helmholtz billows. Kelly & Maslowe ( 1970) considered a nonlinear steady- 
state problem for small Richardson numbers, and Maslowe (1972,1973) extended this 
to larger Richardson numberg. Margolis & Su (1978) also studied a nonlinear steady- 
state problem, but where Maslowe accounted for some effects of recirculation they 
considered the fluid in the pockets as static. I n  spite of this difference, solutions were 
obtained for Richardson numbers greater than unity in both references. Our rather 
primitive analysis suggests that  solutions for R > 1 are possible only if recirculation 
effects are included. 

Margolis and S u  remarked on the non-uniqueness of the solutions and this is also 
observable in our results. 

Mollo-Christensen (1978) investigated a continuous layer of fluid trapped between 
two sets of Gerstner waves, one on the fluid below and the other on the fluid above. 
These Gerstner waves were assumed to be moving a t  the same velocity so that the 
intervening fluid layer was stagnant with respect t o  co-ordinates moving a t  wave 
speed. From our point of view this continuous stagnant layer prevents communication 
between the regions above and below, and the synchronization of upper and lower 
waves might require further explanation. 

Assumptions and discussion 

We see the essential feature of these two-dimensional stratified shear flows as blocking? 
in the region where fluid velocities are small relative to the internal wave (i,e. near the 
critical level). Any disturbance must displace streamlines, and such displacements 
(either up or down) require additional potential energy (because of density stratifica- 
tion). In  steady flow this might be obtained by conversion of kinetic energy, but near 
the zero-velocity streamline there is very little kinetic energy available. Streamlincs 
near the critical level are therefore blocked in steady flow. This fluid is assumed to  be 
trapped in pockets which appear periodically in the horizontal direction. For simplicity 

t The valtdity of tliis assumption remains to  be determiried. 
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this fluid is taken as completely mixed and essentially stagnant. Periodicity is assumed 
but phase and amplitude variations between the upper and lower flow patterns are 
permitted. 

For stagnant fluid in the pockets there must be velocity discontinuities across the 
boundaries of the pockets. Actually viscous forces will create a rotation within the 
pocket and the corresponding centrifugal forces might affect the analysis. A crude 
estimate of the importance of such effects (described later) indicates that they are 
negligible for small ratios of amplitude to wavelength and of only secondary importance 
for moderately large ratios. 

It has also been suggested by a referee that the stagnant-pocket assumption might 
apply to  billows which have recently been formed by the breaking of Kelvin-Helmholtz 
waves (i.e. before there has been sufficient time for the viscous forces to  establish 
significant rotation in the pockets; see for example Benney & KO (1978, p. 198)). 

Two functions, f,(p) and f2 (p ) ,  are used later to characterize the stream tubes in 
the steady state. One might assume that initially there exists a shear layer infinitely 
long in the flow direction. This shear layer is then disturbed over some finite length 
sufficient to contain several wavelengths. I n  this disturbed region separate pockets 
are formed. Beyond the disturbed region the blocking creates a continuous nearly 
stagnant layer containing the critical level. Thislayer tends to  prevent communication 
between the lower and upper fluid so that each may be said to  have its own upstream 
direction. If the functions f,(p), f 2 ( p )  are altered in the disturbed region they must 
also be altered infinitely far upstream. We assume that this remote upstream effect 
does not exist except within the>blocked thickness of the shear layer. Therefore the 
functions of p are taken to be unchanged for p values outside of the blocked thickness. 
Such arguments are of course to some extent heuristic. 

The stagnant regions are studied first. They are considered to  be bounded by sinu- 
soidal curves. The velocity and pressure distribution are determined along the upper 
and lower streamlines that bound the stagnant region. (The velocity and density 
boundary layers which must actually separate fluid in the pocket from the external 
flow are omitted here.) Blocking is presumed to  extend only through that portion of 
the shear layer where complete streamlines (from plus to minus infinity) cannot be 
formed. Hence it would be desirable to require a true stagnation point on each boun- 
dary streamline. However, to  avoid difficulties in the numerical analysis points of 
very low velocity are specified instead.? 

The volume of stagnant fluid in a ‘pocket’ is taken to be exactly that which is 
contained between the upper- and lower-boundary streamlines in the same length of 
the undisturbed flow. This implies that the creation of the disturbed flow field did not 
involve large-scale transport of fluid such as would appear if the two boundary stream- 
lines were on the average moved closer together or farther apart. Thestagnant region is 
assumed to be entirely in the shear layer. 

Step-by-step construction of further streamlines is accomplishcd numerically until 
the outer edges of the finite-thickness shear layer are reached. There we attempt to  
match streamline shape and velocity approximately with potential flow fields or 
replace the streamline with a solid boundary. 

A difficult and important factor not considered here is flow-pattern stability. 

t In  spite of this preoaution there are inaccuracies in the Z-interval 0 to An. 
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2. Outline of analysis 
The analysis begins with the study of pressure distribution in a stagnant region of 

simple shape, existing in a shear layer which, in the undisturbed condition, had linear 
density and velocity variations with depth. 

This analysis alone yields some interesting restrictions on Richardson number, but 
we need to know whether or not the local pattern is compatible with any useful upper- 
boundary conditions, such as a potential flow field within which the disturbances will 
decay with increasing height and become negligible before the surface is reached. 

A step-by-step numerical study proceeding from streamline to  streamline gives the 
shape and velocity distribution for the streamline a t  the upper edge of the shear layer 
(the lower edge of the potential flow field). Comparison of this velocity distribution 
with the correct distribution for that streamline shape in a potential flow field indi- 
cates the degree of compatibility with boundary conditions. 

By changing the ratio of shear-layer thickness to  disturbance wavelength and by 
altering the original simple shape of the stagnant region i t  is found that satisfactory 
examples can be obtained. 

It is also found that the Richardson-number effects obtained originally for the 
simple shape apply to drastically modified shapes, subject t o  some minor restrictions. 

Out of a large set of examples, then, a small subset appears to  be consistent with the 
upper-boundary conditions, and we infer that this subset may be physically possible 
and exhibit the Richardson-number effects mentioned. 

A crude check is made on the importance of circulation of the fluid, which has here 
been assumed stagnant. 

3. Mathematical development 
3.1. Description of model 

The analysis is two-dimensional, with the streamwise co-ordinate x and the vertical 
co-ordinate z ,  z = 0 being a t  the level of the centre of the undisturbed shear layer 
(see figure 1 ) .  In  the undisturbed state the density-stratified shear layer has zero 
velocity on the x = 0 axis. This separates flow to the right (above) from flow to the 
left (below). 

I n  the disturbed state the blocked fluid is considered as trapped and mixed. For 
simplicity, zero velocity and uniform density are assigned to it (see figure 2).  The 
disturbance is supposed periodic for some finite distance in the flow direction so that 
a half-cycle appears as in figure 2. 

Inside the stagnant region a hydrostatic situation exists. Pressure P varies only 
with depth so that 

P+pavgz = Ph, (1) 

where pav is the uniform density of the mixed region, PA is the pressure a t  z = 0 and 
g is the acceleration due to  gravity. 

Above and below the stagnant region are streamlines extending to  infinity in the 
streamwise direction. These obey the following equation : 



Disturbances above and below a critical level 399 

FIGURE 1. The undisturbed shear layer. 

FIGURE 2. Stagnant region with phase displacement: (a)  undisturbed flow ; 
( b )  disturbed flow. P ,  ii, Zj, Z identical at A and A' and rtt B and B'. 

where q is the local velocity. This is essentially equation (6), p. 21, in Lamb (1945). 
His 52 becomes gz and his C becomes a function of p, the density that identifies a 
particular streamline. (Density must be constant along any one streamline if the flow 
is to be steady.) 

I n  addition continuity is defined by 

dz' /@ = f , ( p ) /q ,  (3) 

where z' is distance normal to the streamline. This says that stream-tube thickness is 
inversely proportional to velocity in this incompressible two-dimensional flow. 
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The functions f,(p) and f,(p) are assumed unaffectedt by the process that disturbs 
the fluid and so can be determined from the velocity and density distributions specified 
for the initial undisturbed shear layer. These distributions are both assumed linear in z .  
Let p = pa + Ap, where po is the density a t  z = 0 in the undisturbed shear layer. Then, 
with b and c constants, 

and f i  and f 2  are defined by 
q = bz, Ap = - C Z ,  (4) 

15) 

f , (P)  = (b/C2)AP. (6) 

P f l ( P )  = Po+ @P2(Pb2/C2- g/c), 

Po is the pressure a t  z = 0 in the undisturbed shear layer, in contrast to Pi, which is 
the pressure a t  z = 0 in the stagnant region of the disturbed shear layer. 

3.2. Dimensionless variables 

It is convenient to make Ap dimensionless by introducing bp, where 

Specifying h as the horizontal wavelength of the disturbance, with k the corresponding 
wavenumber, and qi the velocity a t  the upper edge of the undisturbed shear layer, 
we have Z = kx, X = kz ,  q = q / q i ,  P = P/p,,q?, 6 = b/kqi ,  C = c/kpo, B = 6 / C  and 

The Richardson number R, defined as N2/ (dq /dz )2 ,  where N is the Brunt-VaisSilii 
g = g / k q f .  

frequency, becomes 
R = g/CB2. (8) 

3.3. The stagnant region 

For simplicity this region is assumed bounded above and below by sine waves having 
the same wavelength but different amplitudes, a: and p ,$  and different 2- and Z- 
origins (see figure 2 ) .  The upper boundary is given by 

- 
Z = iiisinZ+d,, 

z = $sin(Z+d)-dl, 
and the lower by 

where 5 + q5 = 0 defines the inflection point for the lower sine wave. At Z c ,  the contact 
point, the upper and lower boundaries must have the same Z and the same dZ/dZ. 
/7 can be obtained by eliminating $ between the resulting equations, 

Within the stagnant region the density is 

t Outside the blocked thickness of the shear layer. 
1 Modifications of t l i k  shape are discussed later. 
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Here p,, and pl are the densities of the upper and lower boundary streamlines. is 
F a t  .i = 0 in the stagnant region and is related to F,, (the pressure a t  Z = 0 in the un- 
disturbed case) by -- 

Fh = po++lAp,Apil/2C. (14) 

The pressure a t  the upper boundary of the stagnant region is 

F,, = PA-pavg(iiisinZ+d,,), 
and a t  the lower boundary 

Fi = FA-pavg[Psin(Z+9)-~1]. (16) 

If in (15) it is zero then the pressure P is the same as on that streamline (identified by 
its density) in the undisturbed flow. The height 2 (see (9)) is also the same and therefore 
?j is the same. This correspondence (and that for the lower boundary streamline) is 
indicated in figure 2 .  

3.4. The boundary streamlines 

p must be continuous across the boundaries of the stagnant region, but the quantity 
P + pgz, which is more convenient to use, is not continuous across the boundary. For 
the upper and lower streamlines this quantity is 

(P+pgz), = FA+ ( p u - ~ a v ) g [ ~ s i n ~ + d ~ ] ,  ( 1 7 )  

( P  + pgz)i = FA + (pi - pa") s[P sin (X + 9) - di]. (18) 
- - 

Let pu- 1 = ATu etc., and let lAp,l = r and lap11 = s; then 

From ( 2 )  the velocities on the boundary streamlines are 

(20) 
- 
qu = + ( { - 2 [ ( P + p g z ) , - ~ , ] + r 2 B 2 ( 1  - r - R ) } / ( l - r ) ) * ,  

q1 = - { { - 2 [ ( P + p g ~ ) l - F ~ ] + s ~ B ~ ( l  +s-R)) / ( l+s)) . f .  (21) 

The minimum velocity for the upper streamline occurs a t  5 = - &7r and for the lower 
a t  Z + q5 = in. It is desirable to make each minimum velocity a fraction E of the un- 
disturbed velocity (Br or - Bs) for the corresponding boundary streamline so that 

(22) 
- 
qum = BrE, q l m  = - BsE, 

where 0 < E < 1. Then (20) and (21) with substitutions from (17 ) ,  (18) and (19) can 
be put in the following forms : 

(23) 

(24) 

(r* + s*)/( 1 - r )  - r*2( 1 - E2)/R = 0 ,  

@/a) (T* + s*)/( 1 + S) - - ~ * 2 (  1 - E2)/R = 0, 
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where the * indicates division by ZF, and P / E  can beobtained from (1  1). If r* + s* = [* 
and r* -s* = q* then the elimination of q* (except in 1 - r  and 1 +s, which are N 1) 
gives an equation defining [* implicitly: 

with r* and s* defined by 

B/z = [ 1 + 2t*  sin i tc + [*2]+. 

Suppose that the Richardson number R, the contact point X c  and the fraction E 
of the undisturbed velocity attained on the boundary streamlines are all specified. 
Then from (25) and (26) t*, r* and s* can be found by iteration. Specifying the ampli- 
tude iji of the sine wave on the upper boundary of the stagnant region and the original 
density gradient F makes i t  possible to get r and s, which identify the boundary stream- 
lines for the stagnant region. The entire geometry of the stagnant region is then known 
through (19) and (26), which give d,, dl and p .  

From this geometry and (2)  the starting conditions are obtained for step-by-step 
construction of the streamlines. However it is of more immediate interest to solve 
(25) for the Richardson number R and observe that, even in the most favourable case 
for large values ( F c  = - in), the Richardson number cannot exceed unity. 

4. Shape of the stagnant region 
The preceding derivation depends on the minimum-velocity points and the contact 

point for the boundary streamlines, not on their precise shapes. For example, if the 
phase displacement is equal to n and the contact point is a t  ?t = - in, the minimum 
velocity points coincide with the contact point. The original upper sine wave can then 
be replaced by any curve which passes through the contact point, does not go below 
i t  and has a mean ?-value equal to 2,. The lower sine wave can be altered with similar 
constraints, maintaining a mean ?-value of - 21. The amount of fluid in the stagnant 
region is then unchanged and the r-  and s-values are unaltered from the sine-wave case. 
The step-by-step construction of streamlines then starts from these new boundaries 
and proceeds out to the edge of the shear layer. This procedure will be used later in 
studying the effect of shape changes on compatibility of the flow pattern with the 
outer potential flow regions, 

It is also possible to derive equations similar to (23) and (24) for more general shapes 
using the minimum value of 2 ,  ( Z U m i n )  and the maximum value of Zl (21 ,a,) instead of 
their specific values for sine waves. 

It is necessary for XI max to  be equal to or greater than 2 ,  ,,,in for a contact point to 
exist. Setting ?I max = 2 ,  m i n  + C, with C a positive constant, gives 

- TS + ( r  + S )  2 ,  min + r2[ (  1 - r )  (1  - E' ) /R-  11 = 0, 

- -s-  ( T +  S) ( Z u m i n t  C) + s2[( 1 + S )  ( I  - E 2 ) / R -  11 = 0. 

(27) 

(28) 
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Eliminating X u  min gives 
(1 - E2) [r2( 1 - r )  + s2( 1 + s ) ]  

( r + s ) [ r + s + C ]  * 
R =  

Let r and s be much less than unity and let E be 0. Then 

R = ( r2  + s 2 ) / [ r 2  + s2 + 2rs -t- C(r + s)], 

where r ,  s and C are all positive. 

403 

(29) 

5. Richardson-number effects 
If (25 )  is solved for the Richardson number R with r and s negligible (compared t o  

unity),? it appears that  R cannot exceed unity for the stagnant region with sine-wave 
boundaries. From (29) or (30) the same result is obtained for more general shapes. 

Symmetry about a horizontal plane requires p = 5i and q5 = 7r, and r and s must be 
equal and much less than unity. The Richardson number must then be approximately 
one-half for sine-wave boundaries. Again, from (29) or (30) (with C = 0 for symmetry) 
the same result is obtained for more general shapes. 

For Richardson number greater than + (approximately) more than one solution 
can exist for a specified amplitude of the sine wave bounding the stagnant region 
above. This has not yet been explored. 

If it is required that disturbances above and below the shear layer be of widely 
different magnitude then the Richardson number must approach unity for sinusoidal 
boundaries. The requirement that r and s be widely different in magnitude, with 
C = 0, brings a similar conclusion from (29) or (30) for more general shapes. 

Richardson numbers greater than unity can be obtained by eliminating the require- 
ment that  there be contact points for the upper and lower boundaries of the stagnant 
region (letting C be negative in (29) and (30) is a sufficient condition). The pockets then 
merge to  form a continuous stagnant layer which insulates flow above the critical 
height from flow below. 

It is evident from the above that there is a strong dependence of the flow pattern on 
Richardson number in our analysis. Also, for high R, the critical level appears as a 
barrier to  communication as it did in the quite different analysis of Booker & Brether- 
ton (1967) based on mathematical developments by Miles (1961). 

The modification of our stagnant region to include density stratification (instead 
of uniform density) might alter the picture somewhat. However we conjecture that an 
upper limit on Richardson number would exist also in that case for the following 
reasons. Portions of the constant-density stagnant region are maintained a t  levels 
above or below the levels consistent with that constant density in a completely static 
(undisturbed-flow) condition. The forces required to do this are produced dynamically 
by the curved flow in the surrounding shear layer. Even if the stagnant fluid is assumed 
to  be stratified the density will vary only between the densities of the upper- and 
lower-boundary streamlines. Since these streamlines are not horizontal in disturbed 
flow, there are still portions of the stagnant region above or below the levels consistent 
with their densities. At high Richardson numbers density variation with height is 
large and velocity variation is small, so the dynamic forces available to support the 

t r and s are less than 0.005 in the examples shown. 
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displaced stagnant region should become inadequate. Therefore, in the stratified case 
(as in the constant-density case), we conjecture that  the type of flow pattern chosen 
would not exist for high Richardson numbers, and would break down to give a con- 
tinuous stagnant insulating layer. 

6. The shear-layer flow pattern 
So far, only the stagnant region with its boundary streamlines has been examined. 

It is also necessary to construct the flow pattern throughout the shear layer to a 
potential-flow region above and to a potential flow region or a solid boundary below. 

I n  (2) the velooity-pressure relation along any streamline is given. I n  (3)  a con- 
tinuity condition is given, and only a statement of the normal pressure gradient is 
now needed. This can be expressed in terms of the pressure gradients due to fluid 
weight and to centrifugal force. The latter depends on streamline curvature C,. The 
normal pressure gradient is 

dPId2’ = - pg cos B - pq2Cs, (31) 

where 2‘ is normal to the streamline, and 8, the streamline inclination to the horizont’al, 
is 

0 = arctan (dzldx). (32) 

(33) 

For convenience (31) can be rewritten as 

d(P + pgz)/dz’ = gz dpldz‘ - pq2C8. 

A computer program for the step-by-step construction of streamlines was formulated 
using equations equivalent to (2) ,  (3)  and (33).  

7. Potential-flow regions 
Above the shear layer is a constant-density fluid which, in the undisturbed state, 

has a uniform horizontal velocity equal to that a t  the top of the undisturbed shear 
layer. The thickness of this potential-flow region is assumed much larger than the 
horizontal wavelength of the disturbance, and the disturbance is to  decay exponen- 
tially with increasing height in this region. In  order that  i t  should do so, the velocity 
distribution along the streamline a t  the edge of the shear layer must have a special 
relation to the streamline shape. Whatever streamline shape appears a t  the upper 
edge of the shear layer is matched (approximately) by a streamline in potential flow. 
This is accomplished by representing the potential-flow stream function ~ as a sum- 
mation of terms, each harmonic in x and exponential in -2, and adjusting the co- 
efficients to  give good shape agreement. The velocity distributions along the original 
and matching streamlines are then compared. If these are ‘reasonably’ close the 
example is accepted as being compatible with the potential flow. Otherwise the example 
is rejected. Alteration of the ratio of shear-layer thickness to  wavelength seems to be 
the most effective way of obtaining the desired total variation of velocity along the 
streamline. Alteration of the shape of the stagnant region is necessary to get a more 
precise agreement. 

Below the shear layer i t  is only necessary to replace some streamline by a solid 
surface and say that this contour is gcncrating the entire disturbance. 
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FIGURE 3. Example (1) : stagnant region bounded by sine waves. Potential flow, - -. 

I = 0'495 

FIGURE 4. Example (2) : modified stagnant-region shape. Potential flow, - -. 
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FIGURE 5. Example (3) : R = 0.5. Potential flaw, - -. 

8. Examples 
Specification of the Richardson number R, the contact point Zc, and the smallest 

fraction E of the undisturbed velocity measured on the boundary streamlines allows 
one to solve (25 )  for <* and then get the geometry of the stagnant region as described 
in 5 3.4. However, for R very close to 0.5 there are three values of <* satisfying (25 ) .  
Below this there is only one value and above there are two roots. The roots will be 
labelled first, second and third, taken in the order of increasing f;*. 

Examples ( 1 )  and (2) (figures 3 and 4) use the second root and are chosen to illus- 
trate the degree of compatibility attained between the inner flow and the potential 
flows outside the shear layer. The flow pattern is almost symmetrical top to bott'om. 
This required adjusting the Richardson number to  0.495, since the relation between 
upper and lower flow patterns is sensitive to  R in the neighbourhood of R = 0.5. For 
example (1) the stagnant region is bounded by sine waves. The fractional density 
change 2m across the shear layer is 0.01, the shear-layer thickness over the disturbance 
wavelength, t ,  is 0.16, and E,  the ratio of the minimum velocity on a bounding stream- 
line to  the undisturbed velocity of the streamline, is 0.1. The thickness parameter t 
was chosen to give the correct magnitude of velocity change at the edge of the shear 
1 ayer . 

In  example ( 2 )  the stagnant region is bounded by streamlines of modified shape (a 
portion of an ellipse) with the above parameters unchanged. Figures 3 and 4 show the 
shape of one half-cycle of the upper half of the stagnant region (note exaggeration of 
the vertical scale), the shape of the streamline a t  the edge of the shear layer, and the 
velocity distribution along that streamline. For comparison, the velocity distribution 
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- 
Y 

Stagnant 

FIGURE 6. Example (4) : R = 0.7. Potent,ia.l flow, - -. 

which would exist on that streamline in a potential flow is shown. (The accuracy of 
the numerical methods used is questionable in the z-interval from 0 to  in.) It is clear 
that  example (2) shows better detailed agreement in this velocity comparison, although 
example (1) has almost the correct trend except in the region J: = 0 to  if = in. Further 
improvement in the velocity comparison might be expected from a thorough study 
of shapes. 

Examples (3)-(5) a t  Richardson numbers of 0.5,0-7 and 0.9 (figures 5-7) are chosen 
to  show the behaviour of the flow pattern as R approaches unity. The thickness para- 
meter t varies from 0.15 to  0.18 in this series, being adjusted to get better potential- 
flow agreement a t  the upper edge of the shear layer. Other parameterst are the same 
as in examples (1) and (2). The stagnant-region shapes are all elliptic arcs, and the 
agreement with potential flow a t  the upper edge of the shear layer is comparable to 
that in example (2).  

Comparison of example (3) a t  R = 0.5 with example (2) a t  R = 0.495 shows the 
sensitivity to  Richardson number in the neighbourhood of R = 0.5. 

Examples (4) and (5) show the tendency for disturbances above and below the 
critical layer to vary greatly in magnitude a t  high Richardson number (by a factor of 
22 a t  R = 0.7 and a factor of 436 a t  R = 0.9). These flow patterns can be inverted 
(almost exactly) so the larger disturbance can be either above or below. This difference 
in magnitude might be interpreted as the approach to  complete independence which, 
in the absence of rotational effects, is finally realized for R > 1. The upper and lower 
patterns are then separated by a continuous stagnant layer. 

t The second root is used in this series also. 
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FIGURE 7. Example ( 5 ) :  R = 0.9. Potential flow, - -. 

Cases using the first root, with Richardson numbers 0.5, 0.7 and 0.9 (not illustrated 
here), show a trend similar to examples (3)-(5). 

A case with R = 0.3 was also studied (but is not included here). The value of t was 
adjusted to 0.08 for potential-flow agreement. The upper amplitude was 34 times 
greater than the lower, but this contrast is small compared to the factors of 22 and 436 
obtained for R = 0.7 and R = 0.9 respectively. 

Cases with phase displacement have not been studied sufficiently for presentation 
here. 

Non-uniqueness 

The shape of the lower portion of the stagnant region could perhaps be adjusted to 
fit a potential flow be1ow.t However, we have chosen to consider a rigid wavy boundary 
below, which can (within our assumptions) support any pressure or velocity distribu- 
tion. Adjustment of the lower-stagnant-region shape can then provide, for a fixed 
upper flow, an infinite family of lower flows, each bounded by its own rigid wavy wall 
with its own pressure distribution. Our theory is not sufficiently sophisticated to 
exclude such an infinite family of flows, which might actually be restricted by rota- 
tional effects or by stability considerations. Margolis & Su (1978) also note non- 
unique solutions. 

p 1.e. if the value o f t  required is not incompatible with the value required for the upper side. 
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I n  this analysis the fluid in the pockets has been assumed stagnant. Actually some 
rotation or circulation must be created by the action of viscous forces, so that the 
pocket resembles a single eddy. Centrifugal forces due to  rotation may compensate 
partially for the static imbalance of pressures (which exists because the uniform- 
density pocket is not in equilibrium with the undisturbed stratified fluid). Rotational 
velocities are controlled by velocities on the boundary streamlines, and flow curvatures 
are estimated from the curvature of the boundary streamlines. On this basis a crude 
estimate of the ratio of centrifugal force to the force from static imbalance is made. 
This gives a factor of importance FR for rotational effects which is 

FR = [n2/2R] [ ( r  + 8) t/2mI2. 

Here ( r + s ) t / 2 m  measures the ratio of the blocked shear-layer thickness to the dis- 
turbance wavelength (or the ratio of mean amplitude to wavelength for the distur- 
bance). 

If FR approaches zero the rotational effects are negligible. If FR = 1 the full static 
imbalance could be supported by the centrifugal force and the assumption of stagnant 
fluid in the pockets is inadequate. In  the examples shown, FR ranges from 0.03 to 0.24 
approximately. 

10. Conclusions 
( 1 )  Alterations of the ratio of shear-layer thickness to  disturbance wavelength and 

of the shape of the stagnant region boundaries can bring acceptable agreement with 
the potential flow-field boundary conditions. 

(2)  The primary Richardson-number effects are independent of the stagnant region 
shape. 

(3) The analysis shows strong Richardson-number effects as follows. 
(a )  The flow pattern breaks down to give a continuous stagnant insulating layer 

for Richardson numbers greater than unity.? 
(b )  Flow patterns almost symmetrical about the critical height exist for Richard- 

son numbers near $. 
(c) Large amplitude differences above and below the critical height can exist 

for Richardson numbers slightly less than unity. 
(4) For Richardson numbers greater than t the omission of rotational effects seems 

justifiable if the disturbance amplitude is not too large a fraction of the disturbance 
wavelength. 

(5 )  It is not yet clear what steady-state flow pattern exists for an example with a 
ratio of shear-layer thickness to disturbance wavelength which does not allow the 
boundary conditions to be satisfied. 

t This restriction applies even if the blocked region extends outside the shear layer. 
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